
Large Scale Symbolic Programming with GiNaC
Alexander Frink, Christian Bauer, Richard Kreckel�

Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

Abstract. GiNaC is a free framework that embeds symbolic manipulation consistently into the C++ programming
language. It deliberately neglects the split-up into a low level language and a high level language, traditional in the
design of computer algebra systems. The user usually interacts with GiNaC directly in C++. GiNaC was designed to
provide efficient handling of multivariate polynomials, algebras and some special functions that are needed for loop
calculations in HEP. But it also bears some potential to become a more general purpose symbolic system.

INTRODUCTION

When we start a software project that relies to some
extent on manipulating symbolic expressions (as op-
posed to quickly checking some result with our favoured
Computer Algebra System (CAS)), we are usually faced
with a multi-lingual situation. We start by implement-
ing some formulae using a symbolic package and the
language it provides. Then we want to get numeri-
cal results out of it which is usually done by the CAS’
code-generator which produces C or FORTRAN code
which we compile and let run. Sometimes, we also wish
to share our work and provide an intuitive user inter-
face for our program so others may trigger combined
symbolical/numerical/graphical computations with a few
keystrokes.

Even if we have mastered all those individual steps, it
is not uncommon to see how the interaction of the differ-
ent software packages we have been using so far makes
the whole endeavor fail. It may be that our CAS’ lan-
guage is too restriced to formulate larger programs. It
may also be that our programs or the scripts we wrote to
glue everything together break at each software upgrade.
It may even turn out that we cannot convince our col-
leagues to help us with coding in three different languages
on one single project. In any case, large scale projects
tend to become unmaintainable. This is a situation not
uncommon in physics projects. GiNaC1 was designed to
overcome such problems by providing fundamental sym-
bolic facilities in the C++ programming language.

� Authors’ email addresses: Alexander.Frink@Uni-Mainz.
DE, Christian.Bauer@Uni-Mainz.DE,Richard.Kreckel@
Uni-Mainz.DE. This work was supported by ‘Graduiertenkolleg
Eichtheorien – Experimentelle Tests und theoretische Grundlagen’ at
University of Mainz.
1 GiNaC stands for ’GiNaC is Not a CAS’.

HOW PROGRAMS ARE WRITTEN
DOWN WITH GINAC

GiNaC deliberately denies the need for a distinction of
implementation language at different steps of a project. It
is entirely written in C++ and adheres to the international
ISO standard (1). The user can interact with it directly in
that language, freely build upon it and extend it. (Com-
pare this with closed systems where expanding the kernel
is impossible.) Here is a complete program that uses a
Rodrigues repesentation Hn(x) == (�1)nex2

(d=dx)ne�x2

to compute Hermite polynomials:
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

ex HermitePoly(const symbol & x, int n)
{

const ex HGen = exp(-pow(x,2));
return normal(pow(-1,n)*HGen.diff(x, n)/HGen);

}

int main(int argc, char **argv)
{

int degree = atoi(argv[1]);
numeric value = numeric(argv[2]);
symbol z("z");
ex H = HermitePoly(z,degree);
cout << "H_" << degree << "(z) == "

<< H << endl;
cout << "H_" << degree << "(" << value << ") == "

<< H.subs(z==value) << endl;
return 0;

}

When this program is compiled and called with 6 and
0.8-0.5*I as command line arguments it will readily
print out the sixth Hermite polynomial together with that
polynomial evaluated numerically at z = 0:8�0:5i:
$ c++ hermite.cc -o hermite -lginac
$./hermite 6 0.8-0.5*I
H_6(z) == -120-480*z^4+720*z^2+64*z^6
H_6(0.8-0.5*I) == 350.865216-267.07455999999999996*I

Alternatively, arbitrary length exact rational argu-
ments are also honored, thus avoiding rounding errors:
$./hermite 6 4/5-1/2*I

is
derived
from

index
is

of

abstract class

container class atomic class

source of class created by Perl script

e
x
p
a
i
r
s
e
q

basic

e
x
p
r
s
e
q

i
n
d
e
x
e
d

a
d
d

p
o
w
e
r

p
s
e
r
i
e
s

m
u
l

n
c
m
u
l

f
u
n
c
t
i
o
n

i
d
x

l
s
t

r
e
l
a
t
i
o
n
a
l

m
a
t
r
i
x

n
u
m
e
r
i
c

c
o
n
s
t
a
n
t

s
y
m
b
o
l

i
s
o
s
p
i
n

c
o
l
o
r

l
o
r
t
e
n
s
o
r

c
o
l
o
r
i
d
x

l
o
r
e
n
t
z
i
d
x

c
l
i
f
f
o
r
d

l
o
r
v
e
c
t
o
r

A

B

wraps

basic C

Cidxex

ex

FIGURE 1. GiNaC’s class hierarchy and some of the relations between the classes.

H_6(z) == -120-480*z^4+720*z^2+64*z^6
H_6(4/5-1/2*I) == 5482269/15625-834608/3125*I

Syntactically, the program shows how symbolic ex-
pressions are written down in GiNaC pretty much like
common numeric terms thanks to operator overloading
between some of the classes in Fig. 1.

GiNaC can be configured to work with Masaharu
Goto’s Cint C/C++ interpreter2. It is then possible to
work with GiNaC interactively, defining symbolic ex-
pressions, control structures like loops and conditionals
and even functions. A little example shows how one may
symbolically compute the non-relativistic approximation
of γ= (1� (v=c)2)�1=2 to ten orders in v and then inverse
it and get the original result back up to an O(v10) term:

$ ginaccint
Welcome to GiNaC-cint (GiNaC V0.7.0, Cint V5014062)

__, _______ GiNaC: (C) 1999-2000 Johannes Gutenber
(__) * | Germany. Cint C/C++ interpreter: (C)
._) i N a C | Goto and Agilent Technologies, Japan.

<-------------’ with ABSOLUTELY NO WARRANTY. For deta
Type ‘.help’ for help.

GiNaC> symbol v("v"), c("c");}

2 This amazing tool is also the basis of the well-known ROOT object-
oriented data analysis framework (3)

GiNaC> ex gamma = 1/sqrt(1 - pow(v/c,2));
GiNaC> ex gamma_nr = gamma.series(v==0,10);
GiNaC> cout <<pow(gamma_nr,-2) <<endl;
1+(1/2*c^(-2))*v^2+(3/8*c^(-4))*v^4+(5/16*c^(-6))*v^6+
(35/128*c^(-8))*v^8+Order(v^10)^(-2)
GiNaC> cout <<pow(gamma_nr,-2).series(v==0,10) <<endl;
1+(-c^(-2))*v^2+Order(v^10)

Loops are of course written down in ginaccint just
as they would be written for a compiled program:

GiNaC> for (int i=0; i<10000; i+=2) {
> cout << bernoulli(numeric(i)) << ", ";
> }

1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -361
7/510, 43867/798, -174611/330, 854513/138, -236364091/
2730, 8553103/6, -23749461029/870, 8615841276005/14322
, -7709321041217/510, 2577687858367/6, -26315271553053
477373/1919190, 2929993913841559/6, -26108271849644912
2051/13530, 1520097643918070802691/1806, -278332695793
01024235023/690, 596451111593912163277961/282, -560940
3368997817686249127547/46410, 495057205241079648212477

. . . and so on. Due to a limitation of Cint, however, func-
tion definitions need some special help:

GiNaC> //GiNaC-cint.function
next expression can be a function definition
GiNaC> const ex EulerNumber(const unsigned n)

> {
> const symbol xi;
> const ex generator = pow(cosh(xi),-1);
> return generator.diff(xi,n).subs(xi==0);
> }

creating file /tmp/ginac26197caa

GiNaC> cout << EulerNumber(42) << endl;
Out3 = -10364622733519612119397957304745185976310201
GiNaC> quit;

It is thus possible to write large scripts and later com-
pile them and link them in to the user’s application.

HOW GINAC WORKS

GiNaC implements a number of symbolic classes as
shown in Fig. 1. All classes are referenced by the class
of all expressions ex. There is reference counting at
work here, providing GiNaC with a transparent non-
interruptive memory management. It is implemented in
the interplay between class ex and the abstract base class
basic, so the user who wishes to extend the system
does not have to worry about memory management. For
all kinds of numbers (integer, rational, float, complex)
GiNaC uses Bruno Haible’s super-efficient C++-library
CLN (2) as a foundation class. Our class numeric is ba-
sically a wrapper class around CLN’s class cl_N.

COMPARISON AND BENCHMARKS

Is GiNaC competitive? Certainly it does not feature
such a load of features as some big commercial systems.
But even with the tasks it can do, is it efficient? We try
to answer this question with some tests. The first two try
to measure the scaling behaviour when problems become
very big.

The first one is a rather common three step substitute-
expand consistency benchmark:

� let e be the expanded sum of n symbols squared:
e (∑n�1

i=0 ai)
2,

� in e substitute a0 �∑n�1
i=2 ai,

� expand e again, it collapses to a1
2.

Using ginaccint this test may be formulated interac-
tively in an elegant way as follows:

$ ginaccint
Welcome to GiNaC-cint (GiNaC V0.7.0, Cint V5014062)

__, _______ GiNaC: (C) 1999-2000 Johannes Gutenber
(__) * | Germany. Cint C/C++ interpreter: (C)
._) i N a C | Goto and Agilent Technologies, Japan.

<-------------’ with ABSOLUTELY NO WARRANTY. For deta
Type ‘.help’ for help.

GiNaC> #include <sstream>
GiNaC> vector<symbol> a;
GiNaC> ex bigsum = 0;
GiNaC> for (int i=0; i<50; ++i) {

> ostringstream buf;
> buf << "a" << i << ends;
> a.push_back(symbol(buf.str()));
> bigsum += a[i];
> }

GiNaC> ex sbtrct = -bigsum + a[0] + a[1];
GiNaC> cout << pow(bigsum,2).expand()

> .subs(a[0]==sbtrct)
> .expand() << endl;

a1^2
GiNaC> quit;

The results are shown in Fig. 2. The system used was
an Alphaserver 8400 running at 300MHz with roughly
1GB of main memory. We have chosen this system in or-
der to give Maple a chance since MapleV has a built in
limitation to 216

� 1 terms in the representation of sums
on all 32bit platforms which cause this test to break down
quite early at n = 181. The timings show the expected n 2

scaling behavior for the GiNaC, Mathematica and Mu-
PAD with GiNaC being the fastest of the three while the
curves for Reduce and Maple are odd, since they take
off very fast for small problems and become very slow
at the upper end. The fundamental difference here lies
in the memory management: GiNaC, Mathematica and
MuPAD use reference counts, while Maple and Reduce
(being Lisp-based) use a garbage collector.

0.1

1

10

100

100 1000

Size n

GiNaC 0.7
Mathematica 4

MapleV R4
Reduce 3.6

MuPAD 1.3

FIGURE 2. Absolute runtimes for the substitute-expand test in
seconds.

The second test was done on an Intel P-III with
384MB RAM running at 450MHz. The systems were
asked to expand the Gamma function around its first pole
at x= 0 to high orders symbolically. The series expansion

is: Γ(x) = 1
x � γ+

�π2

12+
γ2

2

�
x�

�π2γ
12 +

γ3

6 +
ζ(3)

3

�
x2+ : : : It

can then easily be checked for consistency numerically:
Γ(x) = 1

x �0:5772157+0:9890560x�0:9074791x 2+ : : :
Fig. 3 shows the expected breakdown of MapleV at order
n = 35 when intermediate results exceed 216

� 1 terms.
There are two curves shown for Mathematica here. This
is because by default Mathematica expands the result
only partially to a form comparable with the other sys-
tems. Only after applying FunctionExpand it gets the
same result, but extremely slowly so. But since it turns

Table 1. Runtimes in seconds for the tests proposed by R. Lewis and M. Wester (only as far as applicable to GiNaC)
on an Intel P-III 450MHz, 384MB RAM running under Linux. Abbreviations used: GU (gave up, like Maple’s error
object too large), CR (crashed, out of memory), NA (not available), UN (unable, a prerequisite test failed).

GiNaC MapleV MuPAD Pari-GP Singular
Benchmark 0.7 R4 1.4.1 2.0.19β 1-3-7

A: divide factorials (1000+i)!
(900+i)!

�
�
�

100

i=1
0.20 4.11 1.13 0.37 19.0

B: ∑1000
i=1 1=i 0.019 0.08 0.10 0.041 0.54

C: gcd(big integers) 0.25 9.92 3.01 1.65 0.11
D: ∑10

i=1 iyti=(y+ it)i 0.78 0.13 1.21 0.20 NA
E: ∑10

i=1 iyti=(y+ j5� ijt)i 0.63 0.05 2.33 0.11 NA
F: gcd(2-var polys) 0.080 0.10 0.21 0.057 0.13
G: gcd(3-var polys) 2.50 1.85 3.31 99.5 0.38
H: det(rank 80 Hilbert) 10.0 42.9 42.5 3.97 CR
I: invert rank 40 Hilbert 3.38 7.48 12.0 0.62 CR
J: check rank 40 Hilbert 1.61 2.61 2.95 0.22 UN

K: invert rank 70 Hilbert 22.1 113.8 74.0 5.90 CR
L: check rank 70 Hilbert 9.19 24.1 14.2 1.57 UN

M1: rank 26 symbolic sparse, det 0.36 0.40 0.75 0.016 0.003
M2: rank 101 symbolic sparse, det 1903.3 GU CR CR 251.2

N: eval poly at rational functions CR GU CR CR NA
O1: three rank 15 dets (average) 43.2 GU CR CR CR
O2: two GCDs CR UN UN UN UN

P: det(rank 101 numeric) 1.10 12.6 44.3 0.09 0.85
P’: det(less sparse rank 101) 6.07 13.6 46.2 0.38 1.25
Q: charpoly(P) 103.9 1453.2 741.7 0.15 4.4

Q’: charpoly(P’) 212.8 1435.6 243.1 CR 5.0

0.1

1

10

100

1000

10000

10 15 20 25 30 35 40 45

Order n

GiNaC 0.7
Mathematica 4

MapleV R4
MuPAD 1.4

FIGURE 3. Absolute runtimes to expand the Γ-function around
x = 0 up to order n in seconds.

out that the intermediate result is already useful to some
extent (as can be seen by evaluating it numerically) we

also give it credit by showing the timings for computing
the series without applying FunctionExpand.

As yet another test, we apply GiNaC to a number of
tests invented by Robert Lewis and Michael Wester (de-
scribed in (4)) as far as they are applicable to GiNaC. The
results are shown in Table 1.

STATUS AND AVAILABILITY

Being a special-purpose system, GiNaC aims at be-
ing a fast and reliable foundation for combined symbol-
ical/numerical/graphical projects in C++. It is currently
used as a symbolic engine for loop calculations in the
HEP project (5). It may be downloaded and distributed
under the terms of the GNU general public license from
http://www.ginac.de/. The supporting CLN library
can also be obtained from there and is also available pack-
aged for some Linux distributions. A tutorial introduction
and complete cross references of the source code can also
be found there.

REFERENCES

1. American National Standards Institute, ISO/IEC 14882-
1998(E) Programming languages — C++ (1998)

2. Bruno Haible, Richard Kreckel, CLN Class Library
for Numbers, ftp://ftp.ilog.fr/pub/Users/
haible/gnu/cln-1.1.tar.gz, (2000)

3. Rene Brun, Fons Rademakers, ROOT - An Object Ori-
ented Data Analysis Framework Proceedings of AIHENP
97, Laussanne, (1996)

4. Robert H. Lewis, Michael Wester, Comparison of
Polynomial-Oriented Computer Algebra Systems. (Presented
at the 1999 ISSAC Conference, Vancouver), available
from http://www.fordham.edu/lewis/cacomp.
html, (1999)

5. Lars Brücher, Johannes Franzkowski, Dirk Kreimer, Com-
put. Phys. Commun. 115, (1998) 140–160.

